巧用加法原理和乘法原理解题
概要:;…4个,因此共有5种可能。质因数3在n的质因数分解式中可能不出现,也可能出现1个、2个,因此有3种可能。质因数5在n的质因数分解式中可能不出现,也可能出现1个,因此有2种可能。所以约数的个数:5×3×2=30(个)所有约数的和就是30个约数的和,即等于=31×13×6=2418例2 在下面的图中(单位:厘米)求:(1)一共有几个长方形?(2)所有这些长方形面积的和是多少?解(1)AE这条线段上有多少条线段就是长有多少种取法,很明显得出长有10种取法;同理,宽也有10种取法。一共有(10×10=)100(个)长方形。解(2)长的长度有10种:5、12、8、1、17、20、9、25、21、26,宽的长度也有10种:2、4、7、3、6、11、10、13、14、16。所有这些长方形的面积和=(5+12+8+1+17+20+9+25+21+26)×(2+4+7+3+6+11+10+13+14+16)=144×86=12384(平方厘米)练习:图中有6个点,9条线段,一只甲虫从A点出发,要沿着某几条线段爬到F点。行进中,同一个点或同一条线段只能经过一次,这只甲虫最多有多少种不同的走法?
巧用加法原理和乘法原理解题,http://www.daertutu.com
加法原理和乘法原理是两个最基本的计数原理。熟练地掌握这两个原理,有助于我们解决一些与计数有关的问题。
例1 720有多少个约数?所有约数的和是多少?
解 720=24×32×5,因此,720的任一约数都只能含有质因数2,3和5,对于720的某个约数n,只要研究它所含质因数2、3、5的个数。质因数2在n的质因数分解式中可能不出现,也可能出现1个、2个……4个,因此共有5种可能。质因数3在n的质因数分解式中可能不出现,也可能出现1个、2个,因此有3种可能。质因数5在n的质因数分解式中可能不出现,也可能出现1个,因此有2种可能。
所以约数的个数:5×3×2=30(个)
所有约数的和就是30个约数的和,即等于=31×13×6=2418
例2 在下面的图中(单位:厘米)
求:(1)一共有几个长方形?
(2)所有这些长方形面积的和是多少?
解(1)AE这条线段上有多少条线段就是长有多少种取法,很明显得出长有10种取法;同理,宽也有10种取法。
一共有(10×10=)100(个)长方形。
解(2)长的长度有10种:5、12、8、1、17、20、9、25、21、26,宽的长度也有10种:2、4、7、3、6、11、10、13、14、16。所有这些长方形的面积和=(5+12+8+1+17+20+9+25+21+26)×(2+4+7+3+6+11+10+13+14+16)=144×86=12384(平方厘米)
练习:图中有6个点,9条线段,一只甲虫从A点出发,要沿着某几条线段爬到F点。行进中,同一个点或同一条线段只能经过一次,这只甲虫最多有多少种不同的走法?