小学五年级奥数举一反三(二)
概要:3.写出除1290后余3的全部三位数。一般应用题(一)一、知识要点一般复合应用题往往是有两组或两组以上的数量关系交织在一起,有的已知条件是间接的,数量关系比较复杂,叙述的方式和顺序也比较多样。因此,一般应用题没有明显的结构特征和解题规律可循。解答一般应用题时,可以借助线段图、示意图、直观演示手段帮助分析。在分析应用题的数量关系时,我们可以从条件出发,逐步推出所求问题(综合法);也可以从问题出发,找出必须的两个条件(分析法)。在实际解时,可以根据题中的已知条件,灵活运用这两种方法。二、精讲精练【例题1】 五年级有六个班,每班人数相等。从每班选16人参加少先队活动,剩下的同学相当于原来4个班的人数。原来每班多少人?【思路导航】从每班选16人参加少先队活动,6个班共选16×6=96(人)。剩下的同学相当于原来4个班的人数,那么,96人就相当于原来(6-4)个班人人数,所以,原来每班96÷2=48(人)。练习1:1.五个同学有同样多的存款,若每人拿出16元捐给“希望工程”后,五位同学剩下的钱正好等于原来3人的存款数。原来每人存款多少?2.把一堆货物平均分给6个小组运,当每个小组都运了68箱时,正好运走了这堆货物的一半。这堆货物一共
小学五年级奥数举一反三(二),http://www.daertutu.com
尾数和余数
一、知识要点
自然数末位的数字称为自然数的尾数;除法中,被除数减去商与除数积的差叫做余数。尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。
二、精讲精练
【例题1】 写出除213后余3的全部两位数。
【思路导航】因为213=210+3.把210分解质因数:210=2×3×5×7,所以,符号题目要求的两位数有2×5=10,
2×7=14,3×5=15,3×7=21.5×7=35,2×3×5=30,2×3×7=42.一共有7个两位数。
练习1:
1.写出除109后余4的全部两位数。
2.178除以一个两位数后余数是3.适合条件的两位数有哪些?
3.写出除1290后余3的全部三位数。
一般应用题(一)
一、知识要点
一般复合应用题往往是有两组或两组以上的数量关系交织在一起,有的已知条件是间接的,数量关系比较复杂,叙述的方式和顺序也比较多样。因此,一般应用题没有明显的结构特征和解题规律可循。解答一般应用题时,可以借助线段图、示意图、直观演示手段帮助分析。在分析应用题的数量关系时,我们可以从条件出发,逐步推出所求问题(综合法);也可以从问题出发,找出必须的两个条件(分析法)。在实际解时,可以根据题中的已知条件,灵活运用这两种方法。
二、精讲精练
【例题1】 五年级有六个班,每班人数相等。从每班选16人参加少先队活动,剩下的同学相当于原来4个班的人数。原来每班多少人?
【思路导航】从每班选16人参加少先队活动,6个班共选16×6=96(人)。剩下的同学相当于原来4个班的人数,那么,96人就相当于原来(6-4)个班人人数,所以,原来每班96÷2=48(人)。
练习1:
1.五个同学有同样多的存款,若每人拿出16元捐给“希望工程”后,五位同学剩下的钱正好等于原来3人的存款数。原来每人存款多少?
2.把一堆货物平均分给6个小组运,当每个小组都运了68箱时,正好运走了这堆货物的一半。这堆货物一共有多少箱?
3.老师把一批树苗平均分给四个小队栽,当每队栽了6棵时,发现剩下的树苗正好是原来每队分得的棵数。这批树苗一共有多少棵?
一般应用题(二)
一、知识要点
较复杂的一般应用题,往往具有两组或两组以上的数量关系交织在一起,但是,再复杂的应用题都可以通过“转化”向基本的问题靠拢。因此,我们在解答一般应用题时要善于分析,把复杂的问题简单化,从而正确解答。
二、精讲精练
【例题1】 工程队要铺设一段地下排水管道,用长管子铺需要25根,用短管子铺需要35根。已知这两种管子的长相差2米,这段排水管道长多少米?
【思路导航】因为每根长管子比每根短管子长2米,25根长管子就比25根短管子长50米。而这50米就相当于(35-25)根短管子的长度。因此,每根短管子的长度就是50÷(35-25)=5(米),这段排水管道的长度应是5×35=175(米)。
练习1:
1.生产一批零件,甲单独生产要用6小时,乙单独生产要用8小时。如果甲每小时比乙多生产10个零件,这批零件一共有多少个?
2.一班的小朋友在操场上做游戏,每组6人。玩了一会儿,他们觉得每组人数太少便重新分组,正好每组9人,这样比原来减少了2组。参加游戏的小朋友一共有多少人?
3.甲、乙二人同时从A地到B地,甲经过10小时到达了B地,比乙多用了4小时。已知二人的速度差是每小时5千米,求甲、乙二人每小时各行多少千米?